

Collaborative Filtering

Piyawat L Kumjorn & Panida Nimnual

Features to prediction

- User's Past Interactions (Tweet / Retweet)
 - User Modeling
- Tweet Messages
 - Content-based algorithm
- Relationship between Users
 - Collaborative Filtering
- Influential User
 - Influential Ranking Analysis

Igenda

- Information Filtering
- Collaborative Filtering
 - Memory-based
 - Model-based
- Evaluation Metrics
- Twitter Model

Information Filtering

- Problem: Delivery of information that the user is likely to find interesting or useful
- It can be called a recommender system
- The system must be personalized
- This requires the gathering of feedback from the user to make a profile of the his preferences

Information Filtering

- Two major approaches for information filtering
 - 1. Content-based filtering : content of the items and the user's preferences
 - 2. Collaborative filtering : the correlation between people with similar preferences
 - Hybrid systems = Content-based + Collaborative
 - Alternative approaches
 - Demographic Filtering
 - Economical Filtering

Overview of Collaborative Filtering

Memory-based Approach

7 http://en.wikipedia.org/wiki/Collaborative_filtering

Memory-based Approach

- E.g. Movie Ratings

User-based Filtering

		Amy	Jeff	Mike	Chris	Ken
	The Piano	-	-	+		+
	Pulp Fiction	-	+	+	-	+
tom-b	Clueless Dased Filtering	+		-	+	-
	Cumanger	-	-	+	-	+
	Fargo	-	+	+	-	+

Memory-based Approach

 A prediction is normally based on the weighted average of the recommendations of several people.

Similarity Computation

- Correlation-Based Similarity
 - Pearson correlation

$$w_{u,v} = \frac{\sum_{i \in I} (r_{u,i} - \overline{r}_u) (r_{v,i} - \overline{r}_v)}{\sqrt{\sum_{i \in I} (r_{u,i} - \overline{r}_u)^2} \sqrt{\sum_{i \in I} (r_{v,i} - \overline{r}_v)^2}}$$

u, v are usersi is an itemI is the set of all items that tOther correlation similarity: $r_{u,l}$ is a rating that user u give \cdot Constrained Pearson correlation \bar{r}_u is an average rating given \cdot Spearman rank correlation \cdot Kendall's $\boldsymbol{\tau}$ correlation

Similarity Computation

- Vector Cosine-Based Similarity

$$w_{u,v} = \cos(\vec{u}, \vec{v}) = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$$

u, v are users

 \vec{u}, \vec{v} are vectors of rating scores that u and v have rated respectively

Similarity Computation

– Example

	Chris	Ken
The Piano		+1
Pulp Fiction	-1	+1
Clueless	+1	-1
Cliffhanger	-1	+1
Fargo	-1	
Mean	-1/3	+1/3

Correlation

$$w_{u,v} = \frac{\sum_{i \in I} (r_{u,i} - \overline{r}_u) (r_{v,i} - \overline{r}_v)}{\sqrt{\sum_{i \in I} (r_{u,i} - \overline{r}_u)^2} \sqrt{\sum_{i \in I} (r_{v,i} - \overline{r}_v)^2}}$$

$$w_{u,v} = \frac{(-1+1/3)(1-1/3) + (1+1/3)(-1-1/3) + (-1+1/3)(1-1/3)}{\sqrt{2(-1+1/3)^2 + (1+1/3)^2}\sqrt{2(1-1/3)^2 + (-1-1/3)^2}}$$

$$W_{u,v} = -1$$

- Cosine-based $w_{u,v} = \cos(\vec{u}, \vec{v}) = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$ $w_{u,v} = \frac{(-1) + (-1) + (-1)}{\sqrt{1 + 1 + 1}} = \frac{-3}{3} = -1$

Weighted Prediction

- Simple Weighted Average
- Weighted Sum of Others' Ratings

$$P(r_{a,i}) = \frac{\sum_{u \in U} w_{a,u} r_{u,i}}{\sum_{u \in U} |w_{a,u}|} \qquad P(r_{a,i}) = \overline{r}_a + \frac{\sum_{u \in U} w_{a,u} (r_{u,i} - \overline{r}_u)}{\sum_{u \in U} |w_{a,u}|}$$

 $P(r_{a,i})$ is the prediction value of rating that user a give to item i

- $W_{a,u}$ is the similarity weight of user a and user u
 - \bar{r}_a Is the average rating score of user a giving to all items

Memory-based Approach

 Many collaborative filtering systems have to handle a large number of users. So, selecting some nearest neighbors for computation can improve the performance.

- Two techniques
 - Correlation-thresholding (who's correlation is greater than a given threshold)
 - Best-n-neighbors (with the highest correlation)

Sparsity Problem

- Most collaborative filtering systems have to deal with too few ratings.
- Occurs when number of users and items are very large
- Two people have few rated items in common making the correlation coefficient less reliable
- Several solutions have been proposed:
 - Implicit ratings (Missing Value Imputation)
 - Dimensionality reduction
 - Content description

Classification Approach

- Collaborative filtering can also be formulated as a

classification problem

	Amy	Jeff	Mike	Chris	Ken
The Piano	-	-	+		+
Pulp Fiction	-	+	+	-	+
Clueless	+		-	+	-
Cliffhanger	-	-	+	-	+
Fargo	-	+	+	-	?

16 http://recommender-systems.org/collaborative-filtering/

Classification Approach

	The Piano	Pulp	Clueless	Cliffhanger	Fargo
		Fiction			
Amy +	0	0	1	0	0
Amy -	1	1	0	1	1
Jef +	0	1	0	0	1
Jef -	1	0	0	1	0
Mike +	1	1	0	1	1
Mike -	0	0	1	0	0
Chris +	0	0	1	0	0
Chris -	0	1	0	1	1
Class	+	+	-	+	?

17 http://recommender-systems.org/collaborative-filtering/

Extensions to Memory-based

- Default Voting
- Inverse User Frequency
- Case Amplification
- Imputation-Boosted CF Algorithms
- Weighted Majority Prediction

Overview of Collaborative Filtering

19 http://en.wikipedia.org/wiki/Collaborative_filtering

Model-based Approach

- Models are developed using data mining, machine
 learning algorithms to find patterns based on training data
- Examples
 - Bayesian networks
 - Clustering models
 - Latent semantic models
 - Regression-based models
 - Markov Decision Processes
 - Etc.

Clustering Models

- Group users into classes. Users who are in the same class have same interests.
- Apply obtained clusters in many ways :
 - use a memory-based CF algorithm to make predictions within each cluster
 - The *RecTree*, using k-means with k = 2, recursively splits the large rating data into two sub-clusters as it constructs from the root to its leaves. Each internal node maintains rating centroids of their subtrees. The prediction is made within one specific leaf node.
 - Using naïve bayes principle to find rating scores

 A Latent semantic CF introduces latent class variables in a mixture model allowing us to discover the latent features underlying the interactions between users and items

Latent Semantic Models

- E.g. Movie Ratings

R : m x n matrix

	f ₁	f ₂	f ₃	•••	f _k
u ₁	0.8	-0.3	-3.3		2.4
u ₂	-3.9	-2.6	-0.1		-3.4
u ₃	4.2	3.6	-1.0		3.3
u ₄	0.2	3.4	1.1		-2.4
u ₅	-3.2	-3.8	3.7		3.7
•••					
u _m	-3.4	2.6	4.0		1.0

	f ₁	f ₂	f ₃	•••	f _k
i ₁	3.7	-2.2	-1.9		0.6
i ₂	-1.1	1.0	-0.5		-3.1
i ₃	-3.8	2.8	3.0		3.9
i ₄	0.2	4.4	3.2		-3.9
i ₅	-0.4	-4.9	-1.6		-4.2
•••					
i _n	1.9	0.8	-2.5		2.6

P : m x k matrix

 $Q: n \times k$ matrix

Latent Semantic Models

Х

- To find R : m x n matrix

P _{m x k}					
	f ₁	f ₂	f ₃		f _k
u ₁	0.8	-0.3	-3.3		2.4
u ₂	-3.9	-2.6	-0.1		-3.4
u ₃	4.2	3.6	-1.0		3.3
u ₄	0.2	3.4	1.1		-2.4
u ₅	-3.2	-3.8	3.7		3.7
•••					
u _m	-3.4	2.6	4.0		1.0

			Q	T k x n			
	i 1	i 2	i 3	i 4	i 5	•••	İn
f1	3.7	-1.1	-3.8	0.2	-0.4		1.9
f2	-2.2	1	2.8	4.4	-4.9		0.8
f3	-1.9	-0.5	3	3.2	-1.6		-2.5
•••							
fk	0.6	-3.1	3.9	-3.9	-4.2		2.6

 $R \approx P \times Q^T = \hat{R}$ $\hat{r}_{ij} = p_i^T q_j = \sum_{k=1}^k p_{ik} q_{kj}$

Matrix Factorization

- Single Value Decomposition (SVD)
- Stochastic Gradient Descent
- Alternating Least Square

Stochastic Gradient Descent

For each user-item pair

$$e_{ij}^2 = (r_{ij} - \hat{r}_{ij})^2 = (r_{ij} - \sum_{k=1}^{K} p_{ik} q_{kj})^2$$

17

The gradient at the current values

$$\frac{\partial}{\partial p_{ik}}e_{ij}^2 = -2(r_{ij} - \hat{r}_{ij})(q_{kj}) = -2e_{ij}q_{kj}$$
$$\frac{\partial}{\partial q_{ik}}e_{ij}^2 = -2(r_{ij} - \hat{r}_{ij})(p_{ik}) = -2e_{ij}p_{ik}$$

Gradient Descent for each iteration

$$p'_{ik} = p_{ik} + \alpha \frac{\partial}{\partial p_{ik}} e^2_{ij} = p_{ik} + 2\alpha e_{ij} q_{kj}$$
$$q'_{kj} = q_{kj} + \alpha \frac{\partial}{\partial q_{kj}} e^2_{ij} = q_{kj} + 2\alpha e_{ij} p_{ik}$$

Stochastic Gradient Descent

- For learning process, we train only user-item instances
 (u_i, i_j, r_{ij}) rated in the training dataset.
- To stop iterations, we may consider the overall error.

$$E = \sum_{(u_i, d_j, r_{ij}) \in T} e_{ij} = \sum_{(u_i, d_j, r_{ij}) \in T} (r_{ij} - \sum_{k=1}^K p_{ik} q_{kj})^2$$

- Introducing regularization to prevent overfitting

$$e_{ij}^2 = (r_{ij} - \sum_{k=1}^{K} p_{ik} q_{kj})^2 + \frac{\beta}{2} \sum_{k=1}^{K} (||P||^2 + ||Q||^2)$$

- The new update rules are as follows.

$$p'_{ik} = p_{ik} + \alpha \frac{\partial}{\partial p_{ik}} e^2_{ij} = p_{ik} + \alpha (2e_{ij}q_{kj} - \beta p_{ik})$$
$$q'_{kj} = q_{kj} + \alpha \frac{\partial}{\partial q_{kj}} e^2_{ij} = q_{kj} + \alpha (2e_{ij}p_{ik} - \beta q_{kj})$$

Implementation in Python

```
import numpy
  01
  02
      def matrix factorization(R, P, Q, K, steps=5000, alpha=0.0002,
  03
      beta=0.02):
  04
          0 = 0.T
          for step in xrange(steps):
  05
              for i in xrange(len(R)):
  06
                   for j in xrange(len(R[i])):
  07
                       if R[i][j] > 0:
  08
                           eij = R[i][j] - numpy.dot(P[i,:],Q[:,j])
  09
  10
                           for k in xrange(K):
                               P[i][k] = P[i][k] + alpha * (2 * eij * 0[k][j]
  11

    beta * P[i][k])

  12
                               O[k][j] = O[k][j] + alpha * (2 * eij * P[i][k])

    beta * Q[k][j])

              eR = numpy.dot(P,Q)
  13
14
               e = 0
  15
              for i in xrange(len(R)):
  16
                   for j in xrange(len(R[i])):
  17
                       if R[i][j] > 0:
                           e = e + pow(R[i][j] - numpy.dot(P[i,:],Q[:,j]), 2)
  18
  19
                           for k in xrange(K):
                               e = e + (beta/2) * (pow(P[i][k],2) + pow(Q[k])
  20
      [j],2))
  21
              if e < 0.001:
  22
                   break
  23
          return P, Q.T
```

29

CF categories	Representative techniques	Main advantages	Main shortcomings
Memory-based CF	*Neighbor-based CF (item-based/user-based CF algorithms with Pearson/vector cosine correlation) *Item-based/user-based top- <i>N</i> recommendations	* easy implementation * new data can be added easily and incrementally * need not consider the content of the items being recommended * scale well with co-rated items	* are dependent on human ratings * performance decrease when data are sparse * cannot recommend for new users and items * have limited scalability for large datasets
	*Bayesian belief nets CF *clustering CF	*better address the sparsity, scalability and other problems	*expensive model-building
Model-based CF	* MDP-based CF * latent semantic CF	*improve prediction performance	*have trade-off between prediction performance and scalability
	*sparse factor analysis *CF using dimensionality reduction techniques, for example, SVD, PCA	*give an intuitive rationale for recommendations	*lose useful information for dimensionality reduction techniques
Hybrid recommenders	* content-based CF recommender, for example, <i>Fab</i>	* overcome limitations of CF and content-based or other recommenders	* have increased complexity and expense for implementation
	*content-boosted CF	*improve prediction performance	* need external information that usually not available
	*hybrid CF combining memory-based and model-based CF algorithms, for example, Personality Diagnosis	* overcome CF problems such as sparsity and gray sheep	

Evaluation Metrics

- Predictive accuracy metrics
 - Mean Absolute Error (MAE) and its variations
- Classification accuracy metrics
 - Precision, recall, F1-measure, and ROC sensitivity
- Rank accuracy metrics
 - Pearson's product-moment correlation
 - Kendall's Tau
 - Mean Average Precision (MAP)
 - Half-life utility
 - Normalized distance-based performance metric (NDPM)

Predictive accuracy metrics

- Mean Absolute Error (MAE)

$$MAE = \frac{\sum_{\{i,j\}} \left| p_{i,j} - r_{i,j} \right|}{n}$$

The lower, the better

- Normalized Mean Absolute Error (NMAE)

$$NMAE = \frac{MAE}{r_{\max} - r_{\min}}$$

- Root Mean Squared Error (RMSE)

$$RMSE = \sqrt{\frac{1}{n} \sum_{\{i,j\}} \left(p_{i,j} - r_{i,j} \right)^2}$$

³² "A Survey of Collaborative Filtering Techniques" by Xiaoyuan Su et al

Classification Accuracy Metrics

ROC Curve

- X-axis : True Positive Rate (Recall) = TP / (TP+FN)
- Y-axis : False Positive Rate = FP / (FP+TN)
- Area Under Curve (AUC)
- A bigger AUC value is better.

Actual	Prec	licted
	Positive	Negative
Positive	TruePositive	FalseNegative
Negative	FalsePositive	TrueNegative

Twitter Model

 Rating in twitter may refer to retweet, reply, and favorite interaction. Each of these kinds is considered as a binary value.

- Retweet and Reply generate new tweet.
- Each user cannot see all tweets.

Associated Twitter AP

- GET statuses/retweets/:id
 - Returns a collection of the 100 most recent retweets of the tweet specified by the id parameter.
- GET statuses/home_timeline
 - Returns up to 800 Tweets and retweets posted by the authenticating user and the users they follow.
- GET followers/ids
 - Returns up to 5,000 user IDs for every user following the specified user.

Associated Twitter AP

- GET friends/ids
 - Returns up to 5,000 user IDs for every user the specified user is following.
- GET statuses/user_timeline
 - Returns up to 3,200 of most recent Tweets posted by the specified user.
- GET favorites/list
 - Returns the 200 most recent Tweets favorited by the authenticating or specified user.

Collecting Data

Random k users (k = 20)

Expand the community by their friends and followers

Get all posts and favorites of the members from the community

Predict interaction of these n users

Select n users that are interested in tweets of more than 15 members